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The spin up of a stratified fluid 

By JOSEPH PEDLOSKY 
Department of Mathematics, M.I.T., Cambridge, Massachusetts 

(Received 19 May 1966) 

The process by which a stratified, viscous fluid adjusts to small changes in the 
rotation rate of its container is studied. This paper treats the cases of homogene- 
ous layers of different densities, as well as fluids which are continuously stratified. 

It is shown that in several important cases the spin-up process, especiallyin the 
continuously stratified case, has a time scale which is very much longer than for 
homogeneous fluids, and that diffusion is the governing mechanism in the adjust- 
ment process. 

In all cases the detailed problem, including a discussion of the side-wall boundary 
layers, is presented. Some novel features of the side-wall layers are discussed for 
the continuously stratified fluids, while in one case it is shown that no boundary 
layers appear during the transient approach to equilibrium. 

1. Introduction 
When a cylindrical vessel filled with a homogeneous, viscous, incompressible 

fluid rotating at  a constant angular velocity Q has its rotation rate slightly 
altered, the ensuing transient process by which the fluid adjusts to the new 
angular velocity of the container has been described by Greenspan & Howard 
(1963). They showed that the time taken for the fluid to adjust to the new state 
is (L2/vQ)3, where L is a characteristic dimension parallel to the axis of rotation 
and v the kinematic viscosity of the fluid. The adjustment process is controlled 
by the suction of the fluid into Ekman boundary layers on the horizontal surfaces 
of the container, and the resulting secondary motion ‘spins up’ the fluid by 
vortex tube stretching parallel to the rotation axis. 

A question of great interest is the effect that stratification has on this process, 
considering that the stratification could inhibit the secondary flow and alter the 
spin-up dynamics. This problem is clearly central to an understanding of the 
dissipative mechanism for atmospheric and oceanic motions of a large scale, 
where rotational effects are dominant. 

This problem was studied by Holton (1965) and the reader is referred to his 
papers for an interesting discussion of the geophysical significance of this prob- 
lem. Holton found that stratification could play an essential role in the ‘ spin-up ’ 
problem and he considered several problems in detail. He did not, however, con- 
sider in detail the role of the vertical containing boundaries of the fluid in his 
discussion of the spin up of contained fluids in the laboratory. 

It is the purpose of this paper to reconsider this problem and show that a 
consideration of the side-wall boundary is an essential ingredient in a complete 
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theory of the spin up of a contained stratified fluid. The analysis will centre on the 
dynamics of two layers of immiscible fluids and, further, it will be shown that 
there is an essential difference between the layer model and the problem of the 
spin up of a continuously stratified fluid. Although the analysis given here for 
contained fluids differs in certain important aspects from Holton's, his conclu- 
sions for the geophysically interesting case of the dissipation of motions in an 
unbounded fluid are unaffected. 

2. Formulation 
Consider a right circular cylinder of radius r,, containing two layers of homo- 

geneous immiscible fluid (see figure 1). The lighter layer with density p1 lies above 
a denser layer with a density p, (pz > pl). The thickness of each layer, HI and H,, 
is assumed constant in the absence of motion relative to a co-ordinate system 

I 
FIGURE 1. The configuration of the two-layer system. 

rotating with an angular velocity Q. This assertion, which ignores the centrifugal 
curvature of the interface between the fluids, will be validlwhenever 

a condition which will be assumed throughout this analysis. 
Qzr!/gHn -g 1 (n = 1,2), 

The equations of motion describing the time-dependent motion of the fluid are 

(2-1) 

(2 .2)  

The subscript n = 1 refers to the upper layer while n. = 2 refers to the lower. 



T h e  spin up of a strati$ed Jluid 465 

The boundary and initial conditions corresponding to an impulsive change 
EQ,  (c < l), in the magnitude of the cylinder's angular velocity are q, = eQ,& x r 
for t < 0 and q, = 0 on the solid boundaries. The unit vector f is parallel to the 
rotation axis. At the interface, h2(x, y, t ) ,  where continuity of velocity and stress 
is assumed, we have, in addition, the kinematical condition 

q,. f = dh,/dt. 

The following dimensionless variables, denoted by asterisks, are introduced : 

r = T o r * ,  t = Q-lE-Bt,, q = croQqx, 

P1= P1s(H-z)+Pl~Q2~:Pl*, 

P2 = P1SH+P2s(H2-z)+P2eQ2r~P2* ,  

h.2 = H 8 - t  (sQ2%7'H2)r2l, 

where 9' = (P2 - P1) SlP2 and s'ls < 1, 

H = Hl + H, and E = v/Qr:. 

The density difference between the two layers is taken to be so slight that the 

If the upper surface, h, is a free surface, its position is given as 
kinematic viscosity is assumed to be the same in both layers of fluid. 

h = H[1+ (€Q2./;r/gH)] 

ql.f = 0. 

while the kinematic condition (since Q2ri/gH < 1) on x = h is 

In  terms of these variables the linearized equations of motion become (after 

(2.3) 

v.q, = 0, (2.4) 

q, = 0 on rigid boundaries, (2.5) 

dropping the asterisks) 

E@q,/at) + 2E x q, = - Vp,  -I- EV2q, (n = 1,2), 

with the linearized boundary and initial conditions 

qn= f x r  for t < 0. (2.7) 

The conditions of continuity of stress and velocity a t  the interface will be 
discussed more fully later. Since the problem has axial symmetry all fields will be 
functions only of r,  z and t .  The velocity in each layer, q,, has components u,, vn, 
w, in the radial, circumferential and vertical directions. 

3. The technique of solution 
The solution of the problem will be found in the case when E < 1, which obtains 

in most geophysically interesting cases, and which is easily reproduced in the 
laboratory. The solution in that case can be found by perturbation methods. 

30 Fluid Mech. 28 
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region, can be written 
The solution in the interior of the fluid, removed from any boundary-layer 

V ,  = vL0)+E*~L1)+ ..., 
U ,  = E*z@+ ..., 
W, = E*w$)+ ..., (3.1) 
p, =pp+E*&’+ ..., 
qz = qJo)+ E*qJ1)+ .... 

Substitution of (3.1) into (2.1) yields from the O( 1) equations: 

which state that the O( 1) circumferential velocity is geostrophic and independent 
of z in the interior. 

The O(E!t) problem yields the equations 

(3.4) 
a - v20) = - 2u (1) 
at n~ 

or 

(3.6) states that the rate of change of the O(1) vorticity is provided by vortex 
tube stretching parallel to the axis of rotation. 

To complete the problem it is necessary to consider the Ekman layers which 
are needed to satisfy (2.5) on the rigid horizontal bounding surfaces. It can be 
shown (Greenspan & Howard 1963) that the effect of the layers (which have a 
non-dimensional thickness O(E4)) is to specify the vertical interior velocity at the 
rigid horizontal boundaries. These are 

) on z = O ,  (3.7) 
i a  
2 ar 

wJ1) = - - (rz, (0) 

and 

if the upper boundary is a rigid wall. If the upper surface is free, (3.8) is replaced 

wj’) = 0 on z = H/ro.  (3.9) 
by 

Similarly, Ekman layers at x = H2/ro are required to satisfy the conditions of 
continuity of velocity and stress. The technique of matching is substantially the 
same as a t  a solid boundary and with (2.6) the conditions on the interior flow 
become 
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The O( 1) velocity is independent of z so that (3.6) may conveniently be verti- 
cally integrated in each layer to yield (using (3.2), (3.7), (3.8) and (3.10)) 

a [D2pio)+ k1B’(p40)-pi0))] = - kl[D2pi0)+ &D2(pio)-pdo))], (3.11a) 
at 

at 
- a [D 2 p2 (0) + k 2 p ((PI (0) -p$O’)] = -k2[D2p2(o)+ 4D2@Jo)-p$”)], (3.11 b )  

where k, = ro/Hn (n = 1,2) ,  

P = 4Q2rO/g‘, 

In  deriving (3.11 a, b )  use has been made of the relation 

@) = p 4 0 ) -  (0) P1 3 

which is derivable from (3.3) and the matching condition of the total pressure at  
z = H2/ro. If the upper surface is free at z = H/ro it is only necessary to change 
(3.1 1 a )  by deleting the first term in the bracket on the right-hand side. 

To complete the problem it is necessary to consider the side-wall boundary 
layers required to satisfy (2.5). For the layer problem considered here, the struc- 
ture of the side-wall boundary layers is essentially the same as for the homogene- 
ous problem. There is a layer existing in the region ( 1  - r )  = O(Ei) which brings 
the normal and circumferential velocities to rest, and a thinner layer in the 
region (1 - r )  = O(E*) required to bring to rest the vertical velocity pumped out 
of the lower Ekman layer by the vertical Ei  layer (see Greenspan & Howard 
1963). 

The vertical velocity within the side-wall boundary layers is O(Ef) .  Thus, to- 
gether with (2.6), this implies that the interface acts as a rigid lid preventing fluid 
from penetrating from one layer to the other within the side-wall boundary 
layer. This consideration is of paramount importance in understanding the rela- 
tionship between the finite-layer models and the continuously stratified case. It 
is also possible to show by detailed consideration of the side-wall boundary layers 
that no other condition is imposed by the boundary layers o n  the interior $ow. We 
shall see that this is true only for the problem involving the immiscible layers of 
fluid. 

The correct condition on pi01 on r = 1 can be derived as follows. Since the 
motion field is axially symmetric it is necessary to explicitly pose the integral 
constraint that the volume of each layer of fluid is conserved. In  terms of our non- 
dimensional variables this can be written 

(3.12) 

with an error of O(E%) arising from the neglect of the volume of fluid in the side- 
wall boundary layers. In terms of the pressure field this condition is 

(3.13 

30-2 
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that 
If (3.1 1 )  is integrated over the area of each fluid layer and (3.13) is used we find 

( 3 . 1 4 ~ )  

(3.14 b)  

dw,ldt = - k,[w, + &(w, - 4 1 ,  
dw,/dt = - k2[0, + 4 ( q  - w,)] ,  

where 

The application therefore of (3.13) to the equations of motion yields a pair of 
ordinary differential equations for the decay of the average vorticity in each 
layer, or, equivalently, for the decay of the circulation of the interior velocity at 
r = 1. The spin up of the total vorticity in each layer is unaflected by baroclinic 
processes. The baroclinic production of vorticity in each layer by vortex tube 
stretching must on the average be zero to conserve the volume of each layer. The 
baroclinicity may, however, yield important contributions to the vorticity 
change locally. 

In  addition (3.14) allows us to compute "Ao) at r = 1 for all t and it provides a 
convenient recasting of the boundary condition (3.13) since apLO)/ar, on r = 1 ,  
is now determined by the solution of (3.14).? 

4. Spin up for the free surface system 

equations describing the decay of the O( 1) motion are then 
Consider the particular case where the upper surface at  x = H/ro is free. The 

( 4 . l a )  (a /a t ) [D2pp+  Ic,P(p,$o)-pp)] = - Icl[~D2(pp)-p,d0))], 

( i ~ / a t ) [ D 2 ~ ~ o ' +  k2F(p$0)-p40))] = - k2[Dzp,d0'+ 4D2(j4')-pi0))], (4.1 b )  

while the equations governing the evolution of the average vorticity, or the 
interior rim velocity, are 

d v p (  1, t ) / d t  = - +k,[v$O)- v p ] ,  ( 4 . 2 ~ )  

dv$O)( 1, t ) /dt  = - k p  + *(up - Vp)], (4 .2b)  

with the boundary and initial conditions 

and 

(4 .3a)  

(4 .3b)  

The boundary condition onpLo) at  r = 1 is given in terms of the solutions of (4.2a) 
and (4 .2b) .  It is important to note before proceeding further the absolutely vital 
role of the interface frictional coupling. In  the absence of this frictional coupling 
the right-hand side of (4.2~5) would be zero, implying that in the absence of fric- 
tional coupling the average vorticity of the upper layer of this free surface system 
would not decay. In  fact one would need to wait for viscous diffusion from the 
side walls to destroy the average vorticity, which effect takes a much longer time. 
(The effect of the side-wall diffusion is, in a spin-up time, still confined to a region 
of O(Et) thick on the side wall.) 

t Holton (1965) took p:) = 0 on r = 1 as his boundary condition. 
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The solutions of (4.2) which satisfy the conditions 

v P ( 1 )  = 1 a t  t = 0 

are (4.4 a) 

where a, = - t(k1 f 3k2) + [&(kl + 3k# - @1k&, 

012 = - k(k1 f 3kz) - [&(kl+ 3k2)'- gklk2]*. 

These results can then be used to construct the solutions to (4.la) and (4 . lb) .  
The solution which satisfies ( 4 . 3 a )  and (4.3b) can be easily found, now that 
apio)/ar is known on r = 1, through the use of Laplace transforms and a Fourier- 
Bessel expansion and is 

(4.5a) 

where ym is the rnth zero of Jl(ym). 
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5. Discussion of the layer system results 
To simplify the discussion of the analytical results it is convenient to consider 

the case when both layers are of equal thickness, i.e. k, = k, = k = 2ro/H. The 
qualitative nature of the result is unchanged but the resulting algebraic simpli- 
fications are considerable. In  this case the decay rates a,, a2 for the total vorticity 
are simply 

01, = - k( 1 - 1/42) = - 0*3k, 

a, = - k( 1 + 1/42) = - 1*7k, 

1 -4 

1 a 3  
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FIGURE 2.  The time history of the circumferential velocities in each layer at  r = 1. 

while the rim velocities vLO)( 1, t )  are 

and are shown in figure 2 .  The vorticity in the lower layer which is directly acted 
upon by the frictional coupling to the lower surface spins out faster, leaving the 
upper fluid rotating until the velocity differences across the interface become 
large enough to frictionally couple the two layers and spin out the upper layer. 

In the absence of baroclinic effects (P = 0) each layer would spin up as a solid 
body with an angular velocity in each layer given by ~ $ ~ ) ( 1 ,  t ) .  The pressure field 
would then be given by the first term in ( 4 . 5 ~ )  and (4 .5b ) ,  i.e. excluding the 
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FIaURE 3 a d .  For legend see next page. 
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Fourier-Bessel sum. The effect of the baroclinicity, and the local departure from 
this solid body spin, is given by the Fourier-Bessel series in (4.5a, b) .  For all non- 
zero, finite values of P the fluid in each layer will not spin up (or down) as a soIid 
body. The radial structure of the velocity field a t  five characteristic times is 

kt = 3 

0.7 

v1 0.3, 0.6 ~~ 0.5 

0.3 
0.2 

0. i 
0, 1.0 

0.9 1 

0 0.1 0-2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0 
T 

(4 
FIGURE 3a-e. The structure of the circumferential velocities in each layer. The straight 
lines show the circumferential velocities of a solid body rotation appropriate to the mean 
vorticity in each layer. The curved lines, which depict the true velocity structure, display 
the deviation from solid body rotation. 

shown in figure 3 for a value of kP = 15. The departure from solid body rotation 
is slight for small kt but increases and becomes significant as time goes on. In  
fact, since it can easily be shown that 

ISlrnl < la11 < Isznzl < I 4  
the slowest root is sll and for very large times the velocity field will tend toward 
the shape of the Bessel function Jl(ylr). However, for most reasonable values of 
P the velocity field is very small before this shape completely emerges. It is of 
interest to investigate the limit as p2+p1, i.e. when the fluid becomes homo- 
geneous. 

Notine: that 
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it  is easy to show in the limit F -+a0 that 

which agrees with the result for a homogeneous fluid with a free surface. 
The results presented here can be easily extended to a model with an arbi- 

trarily large (but finite) number of immiscible fluid layers. It is important to note 
in such cases that, if the interfacial frictional coupling is absent, the total vorticity 
in any layer not adjacent to a horizontal rigid boundary would not reach the new 
state of solid body rotation in a spin-up time. If the upper layer is bounded above 
by a free surface, only the lowest layer of a multi-layer system would reach solid 
body rotation within a spin-up time scale ro(vQ)-*. This result is of prime im- 
portance in a discussion of the spin-up dynamics of a contained, continuously 
stratified fluid. 

If the upper bounding surface for the layer model is rigid then the O( 1) motion 
is described by (3.11a, b)  rather than (4.la, b) .  In  this case local baroclinic 
effects appear only when the layers are of different thicknesses. Otherwise the 
fluid spins up as if it were a homogeneous fluid. If the layers are of different 
depths the spin up will initially proceed a t  different rates in each layer, producing 
vertical shears across the fluid interfaces and introducing local baroclinic effects. 
Nevertheless, the average vorticity in each layer spins up independently of the 
local baroclinic effects and the technique of solution and the qualitative results 
are the same as those presented for the free surface model. 

6. The spin up of a continuously stratified fluid 
One might expect that the results of the analysis of the layer models would be 

applicable to the study of the continuously stratified model, especially if the 
number of layers considered is large. A littIe reflexion indicates the difficulties 
attendant on such an interpretation. The primary difficulty is that the continuous 
model restricts the role of viscosity to boundary-layer regions adjacent only to  
solid surfaces. The interfacial friction, which was seen to be vital in the layer 
models, is absent unless the effect of viscosity permeates the entire fluid, which is 
not plausible if E < 1. The implication would then be that a thermally non- 
conducting fluid (infinite Prandtl number) would not have its average angular 
velocity readjusted to the container's new speed until the much longer diffusion 
time (t = O(E-l)) obtained. Alternatively, this further suggests that the effect of 
thermal diffusion may be crucial. This can be understood physically in the follow- 
ing way. If the Prandtl number is small it  will be very difficult for the fluid in the 
side-wall boundary layers to cross the surfaces of constant ambient density and 
hence it would be difficult to close the secondary flow required for spin up, unless 
there i s  suficient diffusion of density to break this constraint. We noted in the layer 
model that the interface between two immiscible fluids acted as a rigid boundary 
preventing fluid mixing. In  the continuous model the only way this difficulty 
can be overcome, as will be seen, is if the diffusion of density is important in the 
side-wall boundary layers. This will require a new side-wall boundary layer which 
is not present in the homogeneous or layer models. 
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ible fluid are 
The equations of motion in the case of the continuously stratified incompress- 

(aqlat)  + q . vq + 2E x q = - (vp/p) + vv2q - 98, 
v.q = 0, 

which are substantially the same as in the layer case with the exception of the last 
equation relating to the Lagrangian density change to the rate of density (or 
temperature) diffusion. The diffusion coefficient is K .  The velocity, position, and 
time variables are non-dimensionalized as in 5 2 and the density and pressure are 

dp/dt = KV2p, 

written 

p = -pogz+@r$pop*, 

where a(z) is the variable part of the ambient density field. The fluid will be 
assumed to be Boussinesq and within this approximation the linearized equa- 
tions describing the time-dependent motion of the fluid are 

Ei(aqiat) + 2$ x q = - vp + Ev2q - ip ,  

Ea(ap/at) - wS-1 = 6EV2p, 

(6.1) 

v.q = 0, (6.2) 

(6.3) 
where S = - Q2ro/(aa/az)g = O(l) ,  and 6 = K/V. 

Note that S (which will be considered a constant throughout) is positive for the 
stably stratified fluids considered here. The parameter 6 will be considered an 
O( 1) parameter with respect to E. 

As before the interior velocity, pressure (and now also density) will be found, 
for E Q 1, by a perturbation expansion 

(6.4) 1 
v = dO)+Eiv(')+ ..., 
u = E*u(')+ ..., 
w = E~w(')+ ..., 
p = p@)+ EBp, + ..., 
p = p'0'+E*p1+ .... 

Substitution of (6.4) into (6.1),  (6.2) and (6.3) yields the zero-order relations 

ap(o)/az = -p). ' 1  a.p(O),/& = ~ ( 0 )  

The O(E4) equations, with a little manipulation, can be shown to yield 

This latter equation is the continuous analogue of (3.6). With the use of (6.5), 
(6.6) may be written completely in terms ofp(O), i.e. 
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The boundary conditions on z = 0, Hlr,  are 

q = o  (6.8) 

p = o  (6.9) 

and some similar condition on the density; either 

if the surfaces are held at  constant temperature (density) or 

4.vp = 0 (6.10) 
if the surfaces are insulated. 

In  either case it can be shown that the condition of dynamical consequence is 
(6.8). This condition is again satisfied by the application of Ekman boundary 
layers whose structure is, to this order, unchanged by the presence of stratifica- 
tion. The condition that the boundary-layer analysis places on the interior flow 
is again 

(6.11) 

1 8  
2 ar and w(l) = -- - (rv(0)) on z = H/ro.  (6.121 

With the application of (6.5) and (6.3) these Conditions can be written in terms 
of the pressure as 

( 6.1 3 a)  

(6.13b) 

These equations provide the necessary boundary conditions for (6.7) on the 
horizontal boundary surfaces. The conditions (6.9) or (6.10) can be satisfied 
through the application of a boundary layer of thickness Ei.  This boundary layer 
is essentially a layer produced by the diffusion of temperature or density into the 
interior within a spin up time. It does not dynamically affect the interior motion 
and will not be discussed further. 

To proceed, some condition onp(O)must be set on r = 1. First note the following. 
If the Prandtl number is infinite (6  = 0) and diffusion of density neglected from 
the beginning, the condition of mass conservation (or an integral statement of 
( 5 . 2 ) )  would imply that for any 0 < x < H/ro,  

and therefore, through the application of (6.3), that 

(6.14) 

If the density perturbation in any side-wall layer is assumed less than O(E-&), 
then the density in (6.14) can be replaced by (The restriction that p is less 
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than O(E-5) is certainly plausible; the reason for the restriction will become clear 
below.) In  that event (6.14) applied to (6.6) yields 

i?rvcO)/at = O on r = 1, (6.15) 

which states that the average vorticity at any 2 (or the circulation on a contour 
r = 1)  is not dissipated within a spin up time. This result is surprising but con- 
sistent with the physical reasoning given in the beginning of this section. To 
remove this difficulty it is necessary to consider the side wall boundary layers in 
detail with the retention of the density diflusion (6 rt. 0). 

It is found that the boundary-layer structure that emerges on the side walls 
has a different character than that present in the homogeneous case. An E& layer 
still exists but in an altered form. Let the dependent variables in this layer be 

(6.16) 

(6.17) 

If (6.16) is substitutedinto (6.1), (6.2) and (6.3) and the limit E+O for fixed y is 
taken, the resulting equations yield 

which is a diffusion equation for V .  The solution can be used to satisfy the no 
slip condition on the circumferential velocity at r = 1. It places no condition on 
the interior flow and will not be considered further. 

It is still necessary to satisfy the no slip condition on u and w. In  addition con- 
ditions on t8he density must be specified on r = 1. If the side wall is held at a fixed 

temperature, p = O  on r = l ;  (6.18) 

while if the side walls are insulated 

1 
expressed as v = v(O)(r, 2, t )  + EhP) + . . . + V(y,x, t )  + . . . , 

u = EWO)(r, 2, t )  + . . . + EU(y , z ,  t )  + .. .) 
w = E:w(o)(r, 2, t )  + . . . , 
p = p y r ,  2, t )  + Ehp'l' + . . . + E q y ,  2, t )  + . . . , 
p = p y r ,  2, t )  + E*p"(r, 2, t )  +E$P(y,  2, t ) ,  

where y = (1 -r)E-&. 

K =  Tv, 

ap/i?r = O on r = 1. (6.19) 

In  the homogeneous and layer problems, the remaining velocity fields are brought 
to rest within an inner layer whose thickness is O(Ef ). No such layer exists for the 
continuously stratified system governed by (6.1)) (6.2) and (6.3). 

If (6.18) is the condition given on the density at  r = 1, then the remaining 
boundary conditions are satisfied within a layer of order E5.t 

Let the dependent variables within this layer be expressed as 

(6.20) I v = v(O)(r, z ,  t )  + V(y,z, t )  + EhV,(z, 2, t )  + .'.) 
u = Equ(o)(r, 2, t )  + q ( x ,  2, t )  + . . ., 
w = W,(x,z,t)+ ...) 
p = Os(x,z, t )  + ... +p(O)(r, 2, t )  + ...) 
p = p(O)(r, 2,  t )  + E i  P(y , 2,  t )  + . . . y 

where z = (1 - r)E-k 
t It is for this reason that the condition p < O(E-*) was required to derive (6.15). 
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The dots in (6.20) refer to terms of higher order in E which are not important for 
this discussion. All the s subscripted variables are chosen such that 

lim ( ), = 0. 

If (6.20) is substituted into (6.1), (6.2) and (6.3) the following equations obtain in 
the limit E -+ 0,  for fixed X ,  

zu, = a2Epx2,  (6.21) 

au,/ax = anyax, (6.22) 

0, = a2w,lax2, (6.23) 

- w, = ss(a2eS/ax2). (6.24) 

It is interesting to note that the variables 0, and W ,  play the same role in this 
thermal side-wall boundary layer that the two components of horizontal velocity 
play in the Ekman layers which exist on the horizontal bounding surfaces. The 
relevant solutions, which possess the characteristic Ekman spiral behaviour, are 

0, = e-z’fl{A(z, t )  cos (x/ /3)  + B(z, t )  sin (z//3)), (6.25) 

W, = - @2e-z/a{A sin (z/p) - B cos (ZIP)), (6.26) 

H W  

where p = J2(8S)*. 

The boundary conditions to be satisfied on x = 0 are 

W, = 0, 

e, + p) = 0, 

q, + u(0) = 0. 

B(x) = 0, 
The application of (6.28 a) yields 

(6.28a) 

(6.28 b )  

( 6 . 2 8 ~ )  

while (6.28b) and ( 6 . 2 8 ~ )  along with (6.5) and the interior O(E)) equations which 
lead to (6.6), in turn yield the conditions 

A(z) = ap‘o)/ax, 

p3(aA/az) = a2p(0)/atar, 

which combine to  yield as a condition on the interior #ow at T = I 

azp(o)/at ar = /33( a2p(O)/ax2). (6.29) 

It is interesting to note the similarity in structure of the side wall condition 
(6.29) with the conditions (6.13a’b) set by the Ekman layers a t  x = 0, B/ro. If 
the thermal diffusion is ignored (S = 0)  then /3 = 0, and (6.29) implies that 

au(*),’at = 0 on r = 1, 

i.e. that the total vorticity at  each level (or the circulation a t  r = 1) is time 
independent on a spin up time scale. Only the retention of the thermal diffusion 
process allows the mean vorticity to adjust to the new container’s angular velo- 
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city. The interior problem which consists of (6 .7) ,  the boundary conditions 
(6.13a, b )  and (6.29),  and the initial condition 

ap(0) 
ar 
- = 2r at t = 0, 

is in general formidable. Nevertheless, a particularly simple solution can be 
found in the special case when 

p 3  = 4Sro/H.  
In  that case the solution is 

p(O) = {r2 - [z  - (H/2rO)l2/2S)e-2rot’R. (6.30) 

The initial state spins out as a solid body in the time required for a homogeneous 
fluid to do the same, with however an alteration of the density field which in- 
creases the static stability of the fluid slightly. This is undoubtedly a very special 
solution which illustrates dramatically the essential differences between the 
layered and continuously stratified fluid problems. 

The essential difference between the continuously stratified and the layered, 
or homogeneous fluids is that the former depends strongly on the ability of the 
fluid to diffuse density sufficiently rapidly to allow the vertical flux of fluid in the 
side-wall layers to close the secondary meridional flow. When this is not possible, 
as in the infinite Prandtl number case ( 8  = O ) ,  the fluid must wait for viscous 
diffusion from the side waIls to slowly work its way into the interior. More striking 
is the example of insulated side walls, where the boundary condition (6 .19)  
applies. The same O(E4) boundary layer obtains, but the inability of the fluid to 
diffuse temperature (density) through the side walls is now reflected in the fact 
that 8, and W, = O(E4) so that the secondary circulation is not closed in this 
layer. The application of (6 .28c) ,  then further implies (since U, = O ( E ) )  that 

so that for the insulated fluid (p, = 0 on r = 1 )  the inviscid circulation for all 
0 ( 1 )  Prandtl numbers is preserved in a spin up time scale, and viscous side-wall 
diffusion must be invoked. This suggests a resealing of the time. Let the time be 
scaled 

This scaling assumes that dissipative processes, rather than Ekman layer suction 
are important in the fluid interior. The resulting dynamical equations become 

E(aq/at)  + 2 f  x q = - v p  + Ev2q - p i ,  

tdimensional = Q-l E-lt* 

(6.31) 

v.q = 0, (6.32) 

(6 .33)  E(ap/at)  - us-1 = S E V ~ ~ .  

If q and p are expanded in powers of E we obtain 

(6.34) 

(6.35) 
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so that the O( 1)  variables are still hydrostatic and geostrophic. However, a con- 
sideration of the O(E) equations yields &n equation for p(O), 

which states that the rate of change of the interior potential vorticity is due to 
the effects of d i ~ u s i o n  in the interior by viscosity and heat w n d ~ t i o n .  The solution 
for the insulated spin up problem which satisfies (6.36) and the conditions: 

ap(O)/& = 0 on r = 1; 

Pp(O)/azar = 0 on r = 1; 

ap(O)/ar = 0 on x = 0, 1; 

Pp(o)/az2 = 0 on z = 0, l ;  

ap(o)/ar = 2r for t = 0; 
can be shown to be 

(6.37) 

where 
8[1- ( -  l)"] 

nny: Jo(Yn) 
Am, = 

and JO(Y7J = 0. 

Thus,  according to the linear theory in the insulated problem there are no O(1) 
Ekman layers and no side-wall boundary layers ; the interior 'spins up' by a strictly 
diffusive process in a time scale O(E-l). The continuously stratified fluid, when 
insulated, then behaves in a dramatically different manner than the homogeneous 
fluid. The secondary circulations are so inhibited by the circulation thatno Ekman 
layer suction is possible. 

Similar problems involving continuous stratification are being studied further. 
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